1. 서 론
건설구조물은 시공 후에도 다양한 외력과 환경적 요소에 지속적으로 노 출되어 유사 시 대형사고가 발생할 수 있다. 이를 방지하기 위해 최근 건설 분야에서는 시설물의 안전 및 유지관리를 위한 건전도 모니터링(Structural Health Monitoring; SHM)에 대한 기술이 대두되고 있다[1-5]. 이때 기존 건설구조물의 건전도 모니터링을 위한 구조응답의 계측은 대부분 유선계 측 시스템에 의존하고 있다[6-9]. 하지만 유선계측 시스템은 설치, 이동에 제약이 따르고, 특히 획득하고자 하는 구조응답의 종류에 따라 서로 다른 데 이터 로거를 개별적으로 사용할 경우 구조응답의 동기화가 어렵다[10, 11]. 또한, 이들 데이터 로거는 계측 채널이 제한적이기 때문에 복잡하고, 다양 한 건설구조물에서 서로 다른 센서를 이용한 많은 채널의 구조응답을 효과 적으로 획득하는데 한계가 있다[12-15]. 이러한 기술적 한계를 극복하고자 최근에는 현격히 발전한 IT 및 무선통신 기술을 접목해 WSNs(Wireless Sensor Networks)를 이용한 SHM에 관한 연구가 활발하다[3], [10-11], [16-18]. WSNs를 이용한 SHM 기술은 상대적으로 저렴하게 계측 시스템 을 구성/확장할 수 있다. 또한, 무선을 활용하기 때문에 비효율적인 유선 케 이블링 없이 센서의 설치, 이동이 자유롭다는 장점을 갖는다[11], [19-20]. 이때 WSNs를 이용한 SHM 기술은 제한된 RF 성능범위 내에서 다량의 구 조응답을 실시간 획득할 수 있어야 한다[3, 21]. 특히 구조물의 거동특성을 평가하기 위해서는 동적응답(가속도 등)의 획득이 요구되는데, 정적응답에 비해 상대적으로 많은 데이터량이 요구되는 동적응답을 무선으로 획득, 전 송함에 있어 병목현상에 따른 데이터 손실과 대용량 DB(Data Base) 구축, 관리에 따른 비용이 증가될 수 있다[22].
이때 압축센싱(CS) 기술은 무선통신의 환경에서 대용량의 데이터를 처 리(송신-수신)하기 위한 기술적 대안이 될 수 있다. 이를 위하여 정보통신 및 신호처리분야에서는 고전적으로 Nyquist 샘플링 이론과 웨이블릿 이론 을 이용한 압축센싱 기술이 연구되었다[23, 24]. 하지만 이들 연구는 CS 기 술에 대한 수치적인 연구가 대부분이고, 실제 구조물 환경에서 무선통신기 반 실시간 계측(시스템)을 통한 실험적인 연구는 부족하다. 이러한 맥락에 서 최근 건설분야에서는 WSN 기반 SHM을 위하여 H/W기반 필터뱅크를 개발하여 실험적으로 평가하였다[25, 26]. 여기서 필터뱅크(filter bank) 란, 신호처리분야에서 정의되는 대역통과필터의 배열이다. 이는 전체 입력 신호중에서 관심 주파수 대역의 신호(정보)만을 선택적으로 표본화(resampling) 하여 획득할 수 있기 때문에, 데이터의 압축센싱의 효과를 기대 할 수 있다. 따라서 필터뱅크는 제한된 속도를 갖는 무선통신환경에서 데이 터의 병목현상을 줄이고, 효율적으로 데이터를 획득할 수 있다. 하지만 필 터뱅크는 대상 구조물이 변경(즉, 관심 주파수 대역의 변화)될 경우, 새롭게 설계/제작되어야 한다. 따라서 이 경우에 필터뱅크를 H/W적으로 새롭게 설계/개발하기 위해서는 많은 시간과 비용이 요구된다. 또한 새롭게 설계/ 개발된 H/W 기반 필터뱅크를 계측시스템에 채용/결합하기 위해서는 인터 페이스의 설계 및 H/W간 충돌(호환 등)과 같은 시스템의 안정성 검증이 요 구된다. 결국 H/W 기반 필터뱅크를 이용한 SHM 시스템은 실무에서의 활 용성 측면에서 비효율/비경제적일 수 있다.
이러한 H/W 기반 필터뱅크의 단점을 극복하자, 선행연구에서는 구조물 의 동적응답을 압축센싱하기 위하여 달팽이관 원리를 이용한 S/W 기반의 필터뱅크를 개발하고, 이를 CAFB라고 명명하였다[27]. CAFB는 필터뱅 크의 최적화 조건을 프로그램 언어를 이용해 S/W적으로 쉽고 빠르게 수정/ 작성하고, 이를 임베디드 S/W 기술[28, 29]을 이용하여 계측 시스템에 정 확히 적용(FPGA 기반 embedded)할 수 있는 장점이 있다. 하지만 이러한 장점에도 불구하고 선행연구에서 개발된 CAFB가 WSN 기반의 SHM에 활용되기 위해서는 다양한 실험적 검증이 요구된다. 특히 대상 구조물의 변 화(즉, 관심 주파수 대역의 변화)에 따라 CAFB는 달리 최적화되어야 하기 때문에, 필터뱅크의 최적화를 위한 기준신호의 변화에 따른 효과를 평가해 야 한다. 그리고 CAFB는 구조물의 SHM을 위해서 평상시의 구조(동적)응 답 뿐만 아니라 지진과 같은 예측하기 어려운 위험/돌발 상황에서도 올바르 게 작동해야 한다.
이러한 관점에서 본 논문에서는 선행연구된 CAFB의 실험적 검증을 위 해 다음 두 가지 목적으로 후속연구를 진행하였다: 첫 번째 목적은 건설분 야의 대표적인 랜덤(지진)파형을 이용하여 최적화된 CAFB의 데이터 압축 성능과 효과를 평가하였다. 두 번째 목적은 지진상황에서 구조물의 동적응 답을 포함한 지진응답을 CAFB가 실시간으로 압축하여 획득할 수 있는지 검증하였다. 이를 위해 먼저 건설분야의 대표 랜덤파형(El-centro 지진파 형)으로 CAFB를 최적화하였고, 최적화된 CAFB를 무선기반의 IDAQ 시 스템에 임베디드하였다. 다음, 지진응답 실험을 위해 가진대에 설치된 2경 간 교량을 이용하여 El-centro 지진파형으로 가진하였고, 동시에 2경간 교 량의 동적응답을 무선기반 IDAQ 시스템을 이용해 실시간 획득하였다. 지 진응답 실험으로 획득된 압축신호를 원시신호와 상호 비교하여 CAFB의 성능을 정량적으로 평가하였다. 실험 결과로부터, 본 논문에서 El-centro 지진파형으로 최적화된 CAFB는 측정대상 구조물의 동적응답을 관심된 주파수 대역(10 Hz 미만)을 중심으로 압축하여 획득하는데 타당하였다. 또 한, 지진상황에서는 지진응답을 포함하면서도 SHM을 위한 대상 구조물의 동적응답을 효과적으로 압축센싱할 수 있었다. 최종적으로, 이상의 결과로 부터 본 논문에서 평가된 CAFB는 WSNs 기반의 SHM을 수행하기 위한 경제적이고 효율적인 구조물 동적응답 압축센싱 기술임을 실험적으로 확 인하였다.
2. 달팽이관 원리기반의 인공필터뱅크(CAFB)
2.1 CAFB 개념과 특성
인체의 달팽이관은 소리를 뇌에 전달하기 위하여 가청주파수 대역 (Audio frequency band)을 중심으로 여러 개의 유모세포(Hair cells)에서 소리의 특정 주파수를 수집하는 원리로 작동한다. 이러한 인체의 달팽이관 원리를 이용한 CAFB는 구조물의 전체 동적응답 중에서 관심 주파수 대역 의 신호만을 압축센싱하기 위하여 S/W 기반으로 고안(설계)된 대역통과필 터들의 배열(즉, S/W 기반의 필터뱅크)이다[27]. S/W 기반으로 고안(설 계)된 CAFB는 다음 두 가지 장점이 있다. 첫 번째 장점은 필터뱅크의 최적 화 조건을 상용프로그래밍 언어을 이용해 S/W적으로 쉽고 빠르게 수정/ 작성할 수 있다. 두 번째 장점은 S/W 기반으로 수정/작성된 필터뱅크는 EST(Embedded Software Technique)을 이용하여 계측 시스템에 오류없 이 정확하게 적용(FPGA 기반 임베디드)할 수 있다.
한편, 필터뱅크는 Fig. 1의 Step.1~3과 같이 입력신호(Step.1)를 주파 수 대역별로 분해(Step.2)하고, 이를 다시 재구성(합성)(Step.3)하여 출력 하는 과정을 수행한다. 이러한 신호의 분해 및 합성과정을 수행하는 필터뱅 크는 설계자의 목적 정보 및 관심 주파수에서 따라 달리 설계될 수 있다. 이 때 필터뱅크 내의 대역통과필터의 수가 많고, 그 간격이 조밀할수록 입력신 호 대비 출력신호는 정확도가 높아지는 특성을 갖는다. 하지만, 대역통과필 터의 수가 많아질수록 데이터 연산, 처리 효율은 감소하게 되므로, 결국 필 터뱅크의 최적화가 요구된다. 필터뱅크의 최적화를 위해서는 Fig. 1에 나 타낸 대역통과필터의 (i) 개수(Number of Band Filters, red), (ii) 대역폭 (Bandwidth, blue), (iii) 간격(Spacing, green) 등을 결정해야 하며, 이러 한 3가지 설계요소를 동시에 만족시킬 수 있는 조건을 찾기 위해 수치적/반 복적인 연산이 요구된다.
또한, 한편, 필터뱅크 내의 대역통과필터를 통해 분해-합성된 출력신호 는 입력신호 대비 관심된 특정성분(정보)만을 포함하므로, 목적 데이터의 취득관점에서는 유효할 수 있지만, 이때 출력신호는 대역통과필터의 특성 상 입력신호의 샘플링 간격과 동일한 크기를 갖는다. 결국 필터링 전과 후의 데이터 크기는 동일하므로, 데이터의 획득, 전송, 관리 측면에서는 이점을 포함하지 못한다. 특히, 제한된 통신속도 범위를 갖는 WSNs 기반으로 구 조물의 동적응답을 효율적으로 획득하기 위해서는 데이터의 압축기술이 요구된다. 이를 위해 선행연구에서 개발된 달팽이관 원리기반의 인공필터 뱅크(CAFB)는 Fig. 1의 Step.2~4와 같이 입력신호를 분해(Step.2)-합성 (Step.3)-압축(Step.4)할 수 있도록 대역통과필터 최적화 알고리즘(BOA) 과 첨두치 색출 알고리즘(PPA)으로 구성하였다[27].
2.2 대역통과필터 최적화 알고리즘(BOA)
대역통과필터 최적화 알고리즘(BOA)은 건설구조물의 SHM을 위하여 요구되는 목적 모드를 결정하는데 적합하도록 관심 주파수 대역을 중심으 로 필터뱅크를 구성하고, 이것으로부터 재건신호를 산출하도록 개발하였 다[27]. 이때 BOA는 대역통과필터의 개수, 대역폭, 간격을 반복적으로 변 경하며 재건신호를 산출한다. BOA에서 산출된 재건신호는 대상 구조물로 부터 획득한 원시신호(raw(original) signal)와의 비교를 통해 원시신호 대 비 재건신호의 추종능력을 평가한다. 본 논문에서는 원시신호 대비 BOA 에서 산출된 재건신호의 추종능력을 평가하기 위하여 Fig. 2 및 식 (1)로부 터, 식 (2)의 재건오차(Reconstruction Error; RE)를 이용하였다.
여기서, y(t)는 응답시간 별 원시신호, x(t)는 응답시간 별 재건신호, xi (t) 는 응답시간 별 필터뱅크로부터 i번째 출력된 재건신호, T는 응답시간의 전체 길이(sec.)이다. 식 (2)에 정의한 재건오차는 원시신호와 재건신호의 상대적인 차이를 절대값으로 나타낸 것으로, 재건오차가 0에 가까울수록 재건능력이 우수한 것으로 판단할 수 있다.
2.3 첨두치 색출 알고리즘(PPA)
첨두치 색출 알고리즘(PPA)은 식 (1)을 통해 결정된 재건신호를 기준으 로 전체신호의 첨두치(peak values)만을 찾아서 해당 시간정보와 가속도 신호값을 재-표본화(re-sampling)하여 압축신호를 산출하도록 개발하였 다[27]. 이때 첨두치 판별은 현재 신호를 기준으로 이전 단계의 신호와 이후 단계의 신호의 변화율을 Fig. 3 및 식 (3)의 중앙차분법을 이용해 계산하고, 변화율의 부호변화가 발생되었을 경우 바뀌기 전의 신호값을 색출하였다. 재건신호 대비 압축신호의 상대적인 데이터의 크기(Size)는 식 (4)의 압축 률(Compressive Ratio; CR)을 이용하여 평가하였다.
여기서, x는 재건신호, t는 재건신호 x의 샘플링 간격(시간), ƒ(x)는 재건 신호 x의 함수이다. Fig. 3으로부터 현재 기준의 i번째 재건신호 xi에 대한 도함수 는 식 (3)과 같다. 또한, 식 (4)의 압축률에서 NS C는 압축신호 의 데이터 개수, NS0는 원시신호의 데이터 개수이다. 이때 식 (4)의 압축률 이 0에 가까워지면 압축효과는 우수한 것으로 판단할 수 있다. BOA와 PPA로 구성된 CAFB는 3.1절의 필터뱅크 최적화와 3.2절의 IDAQ 시 스템에 적용을 위해 Matlab으로 코딩하였다.
3. CAFB 기반 IDAQ 시스템
3.1 El-centro 지진파형을 이용한 CAFB의 최적화
앞서 2장에서 나타낸 CAFB는 대역통과필터 최적화 알고리즘 및 첨두 치 색출 알고리즘으로 구성하였다. 이들 알고리즘은 일련의 연산과정을 통 해 구조물로부터의 원시신호를 최적의 조건으로 분해-재건-압축한다. 본 장에서는 상대적으로 유연한 건설구조물의 동적응답을 압축센싱하기 위하 여 건설분야에서 대표되는 랜덤지진파형이면서, 서로 다른 주파수 영역을 가지고 있는 El-centro(1940, SE)을 이용하여 CAFB를 최적화 하였다.
Fig. 4는 인공필터뱅크의 최적화를 위해 기준신호로 사용된 El-centro 지진파형을 시간 및 주파수 영역(FFT 분석을 통한 magnitude spectrum) 으로 각각 나타낸 것이다. 여기서 Fig. 4(b)의 El-centro 지진파형의 주파수 영역을 살펴보면, 10 Hz 미만에 스팩트럼 성분이 집중되어 있는 것을 확인 할 수 있다. 따라서 El-centro 지진파형으로 CAFB를 최적화 할 경우, CAFB는 10 Hz 미만의 관심주파수 대역을 중심으로 신호를 필터링 할 수 있다. 또한, 일반적으로 건설분야의 장대형 구조물은 상대적으로 유연한 거 동특성을 갖기 때문에 건전도 모니터링을 위해 요구되는 목적 모드의 분포 범위는 10 Hz 미만의 특정 주파수 대역에 국한될 수 있다. 따라서 본 논문에 서는 상대적으로 유연한 건설구조물의 동적응답을 선별적으로 압축하여 획득하고자 10 Hz 미만에 스팩트럼 성분이 집중되어 있는 특성을 갖는 지 진파형으로 CAFB의 최적화 연구를 진행하였다. 본 논문에서는 이러한 주 파수 특성을 갖는 El-centro 지진상황을 가정하였고, 이때 대형 건설구조물 의 동적응답을 획득하고자 El-centro 지진파형으로 CAFB를 최적화하였 다. 이때 CAFB의 최적화를 위해서 크게 대역통과필터의 개수(numbers), 대역폭(bandwidth) 그리고, 간격(spacing) 등을 결정해야 한다. 먼저 대역 통과필터의 개수를 결정하기 위하여 BOA를 이용해 필터의 개수를 1개부 터 20개까지(총 20개의 경우) 변경하면서 식 (2)의 재건오차(RE)를 산출 하였다.
Fig. 5는 El-centro 지진파형에 대한 대역통과필터의 개수 변화에 따 른 재건오차를 나타낸 것이다. Fig. 5에서 보면, 대역통과필터의 개수가 6 개 미만일 경우에는 재건오차의 변화율이 크게 나타났으며, 반면 대역통과 필터의 개수가 6개 이상일 경우에는 재건오차의 변화율이 상대적으로 작 게 나타났다. 이때 El-centro 지진파형을 이용한 재건신호의 오차는 대역 통과필터의 개수가 11개일 때 최소값을 보였다. 따라서 본 논문에서는 El-centro 지진파형을 이용하여 CAFB를 최적화하기 위한 대역통과필터 의 개수를 11개로 결정하였다.
한편, 앞서 결정된 대역통과필터의 개수(11개)는 CAFB의 응답성능을 최대로 보이기 위하여 재건오차가 최소값을 갖는 조건으로 결정하였다. 하 지만, 필터의 개수가 많아지면 H/W 또는 S/W적으로 필터뱅크를 설계/구 성함에 있어서 시간과 비용이 추가될 수 있으며, 특히 SHM을 위해 필요한 대용량의 동적 데이터를 필터링하기 위해서는 많은 계산량을 요구하기 때 문에 실시간으로 데이터를 획득하는데 제약이 따를 수 있다. 따라서 본 논문 에서는 대역통과필터의 개수를 결정함에 있어서 식 (4)의 데이터의 압축률 (CR)를 함께 고려하였다. Fig. 6은 El-centro 지진파형에 대한 대역통과필 터의 개수 변화에 따른 압축률을 나타낸 것이다.
Fig. 6에서 보면, El-centro 지진파형을 이용한 경우 대역통과필터의 개 수 변화에 따른 데이터 압축률은 모두 0.8 이상으로 상호 유사하게 나타났 으며, 대역통과필터의 개수 변화에 따른 데이터 압축률의 영향은 미미한 것 으로 나타났다. 따라서 El-centro 지진파형을 이용한 경우 CAFB를 최적화 하기 위해 앞서 결정된 11개의 대역통과필터의 개수는 타당하였다.
다음으로, 대역통과필터의 설계요소인 대역폭과 간격을 결정하기 위하 여, 본 논문에서는 앞서 결정된 11개의 대역통과필터의 개수를 이용하여 대 역폭과 간격의 변화에 따른 재건오차를 산출하였다. 이때 대역통과필터의 대역폭과 간격은 모두 0.1 Hz에서부터 1.0 Hz까지 0.1 Hz씩 증가시켜, 총 100개의 경우에 대한 재건오차를 산출하였다. Table 1은 El-centro 지진파 형을 이용하여 산출된 대역통과필터의 대역폭과 간격의 변화에 따른 재건 오차를 나타낸 것이다.
Table 1의 El-centro 지진파형을 이용한 경우, 대역통과필터의 대역폭 은 0.7 Hz, 필터의 간격은 1.0 Hz에서 재건오차가 최소로 평가되었다. 따라 서 본 논문에서는 재건오차가 최소로 평가된 대역통과필터의 대역폭과 간 격을 CAFB를 위한 최적설계조건으로 결정하였다.
3.2 CAFB 기반 IDAQ 시스템
앞서 3.1절에서는 El-centro 지진파형을 이용하여 CAFB의 조건을 최 적화하였다. 이렇게 S/W기반으로 개발/설계된 CAFB는 계측 시스템에 임베디드하여 온전한 기능구현은 물론, 차후 필터의 수정/재적용의 편리 성을 제공할 수 있다. 이를 위해 본 논문에서는 Table 2 및 Fig. 7과 같이 RTOS(Real-Time Operating System) 기반의 디지털 소프트웨어 디자인 방식으로 IDAQ 시스템을 구성하였다.
IDAQ 시스템 구성요소 중 데이터 로깅 및 컨트롤러는 NI 사의 cDAQ- 9139를 사용하였다. 또한, 다채널 가속도 계측은 Piezo 센서를 사용할 수 있는 NI-9233 모듈을 사용하였고, 양방향 RF 통신은 Moxa 사의 AWK- 3121 모듈을 사용하였다. 이때 관리자 PC 즉, 중앙관리 시스템은 실시간 다채널 가속도 응답을 획득, 분석, 저장할 수 있도록 Labview를 활용해 GUI(Graphical User Interface)를 완성하였다. 한편 앞서 3.1절에서 최적 화 설계된 CAFB는 Fig. 8과 같이 IDAQ 시스템에 임베디드(embedded) 하였다.
4. 2경간 교량을 이용한 지진응답실험
4.1 대상 구조물(2경간 교량)
본 논문에서는 El-centro 지진파로 최적화된 달팽이관 원리기반 인공필 터뱅크(CAFB)의 응답성능을 실험적으로 평가하였다. 이를 위하여, 실험 실 규모의 2경간 교량을 제작, 활용하였다. 2경간 교량은 단경간(2300× 1800×400 mm(B×L×H))과 장경간(6000×1800×400 mm(B×L×H)) 2 개의 가진 테이블에 길이 방향으로 배치하였으며, 좌측 및 우측 단에는 구조 물 손상을 방지하기 위하여 충격받침을 설치하였다. 또한 각 경간의 하부에 는 서로 다른 강성의 LRB(Lead Rubber Bearing)를 활용하여 각 경간의 횡 방향(X-direction) 1차 고유진동수가 10 Hz 미만이 되도록 설계하였다.
2경간 교량의 외부 가진(external excitation)은 달팽이관 원리기반 인 공필터뱅크의 최적화를 위해 기준응답으로 사용된 Fig. 4의 El-centro 지 진파형을 이용해 가진 테이블의 수평방향으로 가진하였다. 마지막으로 가진실험으로부터 Fig. 10과 같이 구조응답은 단경간 수평방향 가속도 (A-SA), 장경간 수평방향 가속도(A-SB), 가진 테이블의 수평방향 가속도 응답(T-A 또는, T-B)을 가진조건(El-centro 지진파형) 별로 획득하였다. Fig. 9은 달팽이관 원리기반 인공필터뱅크(CAFB)의 응답성능을 실험적 으로 평가하기 위하여 준비된 2경간 교량의 배치 및 구조응답 획득을 위한 가속도 센서 들의 위치(총 3곳)를 나타낸 것이다. 이렇게 준비된 실험세트 는 여러 개의 경간을 갖는 연속 슬래브 교량이 외부의 랜덤한 지진하중 (El-centro 지진 발생조건 등)을 받을 때, 실시간으로 획득될 수 있는 가진 대 및 구조응답(가속도 등)의 획득조건을 표현한 것이다.
앞서 3절에서는 관심 모드가 10 Hz 미만인 유연한 건설구조물의 동적응 답을 압축센싱 할 수 있도록 CAFB를 최적화하였다. 이렇게 최적화한 CAFB의 응답성능을 실험적으로 평가하기 위해서 본 논문에서는 2경간 교 량을 사용하였다. 이때 2경간 교량은 관심된 고유진동수가 10 Hz 미만일 때 El-centro 지진파로 최적화된 CAFB의 응답성능을 기대할 수 있다. 따 라서 본 논문에서는 동적응답 실험에 앞서 Fig. 10과 같이 2경간 교량의 수 평방향 고유진동수를 평가하였다. 2경간 교량의 다경간과 장경간의 고유진 동수는 각각 약 4.5 Hz와 2.2 Hz 내외로 평가되었다. 결국 2경간 교량은 10 Hz 미만의 동적응답을 압축센싱 하도록 최적화한 CAFB의 응답성능을 평 가하기 위한 대상 구조물로 타당하였다.
4.2 El-centro 지진파형을 이용한 지진응답실험
달팽이관 원리기반 인공필터뱅크가 적용된 동적 무선계측 시스템의 성 능을 평가하기 위하여, 본 논문에서는 유선계측 시스템을 병용하여 동적응 답 실험을 수행하였으며, 이때 총 50초 동안 200 Hz의 샘플률을 이용해 가 속도 응답을 획득하였다. 동적 무선계측 시스템에 임베디드된 달팽이관 원 리기반 인공필터뱅크는 앞서 3절에서 도출된 최적화 조건 즉, El-centro 지 진파형을 기준으로 총 11개의 대역통과필터 개수, 0.7 Hz의 필터 대역폭, 1.0 Hz의 필터 간격으로 설계하였다. Fig. 11은 2경간 교량의 El-centro 지 진파형의 가진조건에 대한 동적응답 획득을 위한 지진모사실험의 전경이다.
El-centro 지진파형을 이용한 지진모사 실험을 위하여 부산대학교 지진 방재연구센터(Korea)에서 실험을 진행하였고, 이때 달팽이관 원리기반 인 공필터뱅크가 임베디드 된 무선계측 응답의 비교를 위해 요구된 비교 군(유 선계측 응답) 데이터는 지진방재연구센터(Korea)에서 계측, 제공하였다.
Fig. 12는 El-centro 지진파형을 이용한 가진조건에서 각각 실시간 계측 된 유선계측 응답과 무선계측 응답의 원시신호(original signal)를 시간과 주파수 영역으로 나타낸 것이다.
먼저 Fig. 12(a)와 Fig. 12(b)는 El-centro 지진파형 가진조건에 대한 가 진대에서 계측된 가속도의 시간과 주파수 응답을 나타낸 것이다. 이들 각 영 역에 대한 응답은 Fig. 4의 설계기준 응답에 대한 경향을 충분히 반영하였 고, 특히 무선계측 시스템으로 획득한 원시신호가 유선계측 시스템의 신호 를 온전히 추종함에 따라, 본 논문에서 구성한 무선계측 시스템이 타당함을 확인하였다. 다음 Fig. 12(c)~(f)는 El-centro 지진파형 가진조건에 대한 단경간과 장경간의 시간과 주파수 응답을 구분하여 나타낸 것이다. 이들 응 답을 보면, 우선 무선계측 시스템으로 획득한 원시신호가 유선계측 시스템 의 신호를 온전히 추종함을 확인할 수 있고, 특히 단경간과 장경간의 고유진 동수 대역을 함께 확인할 수 있다. 더불어 Fig. 12(e)에서 보면, 구조물의 주 기성에는 영향을 주지 않지만, 이들 두 경간의 충돌에 따른 정보를 급격한 가속도 상승으로 확인할 수 있었다. 종국적으로 본 논문에서 IDAQ 시스템 을 이용하여 실시간으로 획득한 무선 동적응답은 전체 시간 및 주파수 영역 에서 유선 동적응답과 상호 우수한 일치도를 보였으며, IDAQ 시스템은 무 선기반으로 SHM에 필요한 동적응답을 실시간 획득하는데 타당함을 확인 하였다. 이를 근거로 본 논문에서는 획득된 무선 동적응답(원시신호)을 개 발된 달팽이관 원리기반 인공필터뱅크의 응답성능을 평가하기 위한 비교 신호로 활용하였다.
5. CAFB의 지진응답성능평가
5.1 지진응답에 대한 CAFB의 재건효과
본 논문에서는 El-centro 지진파형을 이용해 최적화 설계된 달팽이관 원 리기반 인공필터뱅크의 데이터 재건성능을 실험적으로 평가하였다. 이를 위하여, 앞서 4절에서 평가된 IDAQ 시스템으로 계측된 동적응답을 기준 신호(원시신호)로 설정하여 원시신호 대비 재건신호의 추종능력을 평가하 였다. 이때 재건신호는 최적화된 인공필터뱅크를 통과한 필터링 신호를 의 미한다. Fig. 13은 Fig. 12의 El-centro 지진파형 가진조건에서 무선계측을 통해 획득한 원시신호 대비 시간 및 주파수 영역의 재건신호를 비교해 나타 낸 것이다.
Fig. 13에서 보면, El-centro 지진파형을 이용해 최적화 설계된 달팽이 관 원리기반 인공필터뱅크는 재건신호가 원시신호의 모드정보를 충분히 재현하였다. 결국, 대역통과필터 최적화 알고리즘은 CAFB의 최적화 조건 으로부터 10 Hz 미만의 주파수 범위 내에서 목적모드를 온전히 표현할 수 있도록 적절히 설계되었음을 확인하였다.
Table 3은 Fig. 13(a),(c),(e)에 나타낸 원시신호 대비 재건신호의 오차 율(RE)을 나타낸 것이다. Fig. 13(a),(c),(e) 및 Table 3으로부터 El-centro 지진파형 가진조건에 대한 재건오차는 가진 테이블에서 0.00411507(재건 효과는 약 99.589%), 단경간에서 0.00492642(재건효과는 약 99.507%), 장경간에서 0.00275122(재건효과는 약 99.725%)으로 각각 나타났다. 결 국 본 논문에서 El-centro 지진파형으로 최적화된 인공필터뱅크는 2경간 교량의 목적응답을 획득하도록 적절히 설계되었다.
5.2 지진응답에 대한 CAFB의 압축효과
다음으로, 달팽이관 원리기반 인공필터뱅크의 데이터 압축성능을 평 가하기 위해, 앞서 Fig. 13(a),(c),(e)의 재건신호를 기준으로 PPA를 이용 해 시간 및 주파수 영역의 첨두치 신호만을 색출하였다. Fig. 14는 Fig. 13(a),(c),(e)의 El-centro 지진파형 가진조건에서 무선계측을 통해 획득한 원시신호 대비 시간 및 주파수 영역의 재건신호와 압축신호를 상호 비교하 여 나타낸 것이다.
Table 4는 Fig. 14(a),(c),(e)에 나타낸 원시신호 및 재건신호 대비 압축 신호의 압축율(CR)을 나타낸 것이다. Fig. 14(a),(c),(e) 및 Table 4에서 보면, 첨두치 색출 알고리즘이 재건신호에 대한 시간영역의 첨두치만을 온 전히 색출하였다. El-centro 지진파형 가진조건에 대한 압축신호는 50초 의 측정시간 동안 총 10,000개의 획득데이터 중 가진 테이블에서 1,753개 의 첨두치 값을, 단경간에서 896개 첨두치 값을, 장경간에서 430개의 첨두 치 값을 각각 획득하였다. 이때 데이터 압축율(CR)은 가진 테이블에서 0.17528247(데이터 압축효과는 약 82.472%), 단경간에서 0.08959104 (데이터 압축효과는 약 91.041%), 장경간에서 0.04299570(데이터 압축 효과는 약 95.701%)으로 각각 나타났다.
다음으로 IDAQ 시스템에 내장된 CAFB로부터 산출된 신호(재건신호 및 압축신호)는 시간응답 성능뿐만 아니라 당초 최적화된 주파수 대역의 모 드 정보를 함께 반영해야 한다. 본 논문에서는 선행연구[27]에서 정의한 Fig. 15 및 식 (5)의 스팩트럼 오차(Spectrum Error, SE)를 이용하여 재건 신호 및 압축신호의 주파수 응답성능 즉, 스팩트럼 효과를 정량적으로 평가 하였다.
여기서, y(ƒ)는 원시신호의 주파수 응답, x(ƒ)는 재건 또는 압축신호의 주 파수 응답, 그리고 F는 FFT해석을 통해 산출된 스팩트럼의 전체 길이(Hz) 이다. Table 5는 원시신호 대비 재건신호 및 압축신호의 스팩트럼 효과를 나타낸 것이다.
Table 5로부터 Fig. 13(b),(d),(f)의 재건신호에 대한 스팩트럼 오차 (SE)는 전체적으로 0.005~0.007(스팩트럼 효과는 약 99.367%)으로 나 타났다. 또한 Table 5로부터 Fig. 14(b),(d),(f)의 압축신호에 대한 스팩트 럼 오차(SE)는 전체적으로 0.007~0.014(스팩트럼 효과는 약 99.037%) 으로 나타났다. 결국 인공필터뱅크의 첨두치 색출 알고리즘은 첨두치 색출 을 통해 데이터의 압축과 더불어 정확한 주파수 정보를 나타내는데 효과적 이었다.
6. 결 론
본 연구에서는 El-centro 지진파형을 이용해서 CAFB를 최적화를 하 고, 최적화된 CAFB를 이용한 2경간 교량(모델 구조물)의 지진응답실험 을 수행해 CAFB의 지진응답 성능을 실험적으로 평가하여 다음의 결론을 얻었다.
-
1) El-centro 지진파형으로 최적화된 CAFB는 관심된 주파수 영역(10 Hz 미만)에 대한 유효 동적응답을 압축된 크기로 획득하는데 타당하였다. 따라서 사용자의 요구 또는 대상구조물의 관심주파수 대역이 10 Hz 미 만일 경우라면 본 논문에서 평가된 El-centro 지진파형으로 최적화된 CAFB를 사용하여 동적응답을 압축센싱할 수 있을 것으로 사료된다.
-
2) 또한, CAFB는 지진상황에서도 구조물의 지진응답을 효과적으로 실시 간 압축센싱 할 수 있었다. 따라서 CAFB는 실무적인 관점에서 구조물 의 SHM을 위한 일반(운영)상태는 물론 위험상태에서도 모두 활용 가능 함을 실험적으로 입증되었다.
-
3) 결국, El-centro 지진파형으로 최적화된 CAFB는 상대적으로 유연한 구 조물(케이블 교량, 초고층건물, 기타 저주파 거동 구조물 등)의 동적응답 을 관심된 주파수 대역(10 Hz 미만)을 중심으로 압축하여 획득하는데 타당하였다.
-
4) 무선 기반의 지능형 데이터 획득 시스템(Intelligent Data Acquisition system, IDAQ 시스템)은 압축센싱기술인 달팽이관 원리기반 인공필 터뱅크(CAFB)를 적용(임베디드)함으로써, WSNs기반 SHM 시스템 의 제한된 RF 성능으로 인한 병목현상을 피하면서 효율적으로 동적응 답을 획득하여 SHM을 수행할 수 있을 것으로 사료되며, 본 논문에서의 CAFB 뿐만 아니라 S/W 기반의 다양한 계측 및 분석함수(논리)를 적용 한다면 사용자의 편리성을 제공할 것으로 판단된다.
-
5) 특히, IDAQ 시스템은 본 논문에서의 CAFB 뿐만 아니라, SHM을 위해 사용자 중심으로 개발된 S/W기반의 다양한 함수와 논리를 시스템에 빠 르고 정확하게 임베디드(H/W적 시스템화)하고, 이를 실시간 운영할 수 있어 새로운 개념의 계측기술로 활용될 수 있는 가능성을 확인하였다.
-
6) 향후 10 Hz 미만의 관심 주파수를 갖는 구조물뿐만 아니라, 여러 다른 관 심 주파수 대역을 갖는 구조 및 시스템(기계, 항공, 시설 등)의 구조응답 을 무선기반을 실시간 획득할 수 있도록 CAFB의 최적화에 관한 후속연 구를 진행할 계획이다.